BEACH-domain proteins act together in a cascade to mediate vacuolar protein trafficking and disease resistance in Arabidopsis.
نویسندگان
چکیده
Membrane trafficking to the protein storage vacuole (PSV) is a specialized process in seed plants. However, this trafficking mechanism to PSV is poorly understood. Here, we show that three types of Beige and Chediak-Higashi (BEACH)-domain proteins contribute to both vacuolar protein transport and effector-triggered immunity (ETI). We screened a green fluorescent seed (GFS) library of Arabidopsis mutants with defects in vesicle trafficking and isolated two allelic mutants gfs3 and gfs12 with a defect in seed protein transport to PSV. The gene responsible for the mutant phenotype was found to encode a putative protein belonging to group D of BEACH-domain proteins, which possess kinase domains. Disruption of other BEACH-encoding loci in the gfs12 mutant showed that BEACH homologs acted in a cascading manner for PSV trafficking. The epistatic genetic interactions observed among BEACH homologs were also found in the ETI responses of the gfs12 and gfs12 bchb-1 mutants, which showed elevated avirulent bacterial growth. The GFS12 kinase domain interacted specifically with the pleckstrin homology domain of BchC1. These results suggest that a cascade of multiple BEACH-domain proteins contributes to vacuolar protein transport and plant defense.
منابع مشابه
Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis
Membrane trafficking plays pivotal roles in various cellular activities and higher-order functions of eukaryotes and requires tethering factors to mediate contact between transport intermediates and target membranes. Two evolutionarily conserved tethering complexes, homotypic fusion and protein sorting (HOPS) and class C core vacuole/endosome tethering (CORVET), are known to act in endosomal/va...
متن کاملPhysical, Functional and Genetic Interactions between the BEACH Domain Protein SPIRRIG and LIP5 and SKD1 and Its Role in Endosomal Trafficking to the Vacuole in Arabidopsis
Beige and Chediak Higashi (BEACH) domain-containing proteins (BDCPs) are facilitators of membrane-dependent cellular processes in eukaryotes. Mutations in BDCPs cause malfunctions of endosomal compartments in various cell types. Recently, the molecular analysis of the BDCP homolog gene SPIRRIG (SPI) has revealed a molecular function in P-bodies and the regulation of RNA stability. We therefore ...
متن کاملFunctional identification of sorting receptors involved in trafficking of soluble lytic vacuolar proteins in vegetative cells of Arabidopsis.
In eukaryotic cells, protein trafficking plays an essential role in biogenesis of proteins that belong to the endomembrane compartments. In this process, an important step is the sorting of organellar proteins depending on their final destinations. For vacuolar proteins, vacuolar sorting receptors (VSRs) and receptor homology-transmembrane-RING H2 domain proteins (RMRs) are thought to be respon...
متن کاملTrafficking of vacuolar proteins: the crucial role of Arabidopsis vacuolar protein sorting 29 in recycling vacuolar sorting receptor.
The retromer is involved in recycling lysosomal sorting receptors in mammals. A component of the retromer complex in Arabidopsis thaliana, vacuolar protein sorting 29 (VPS29), plays a crucial role in trafficking storage proteins to protein storage vacuoles. However, it is not known whether or how vacuolar sorting receptors (VSRs) are recycled from the prevacuolar compartment (PVC) to the trans-...
متن کاملDiscovering Domains Mediating Protein Interactions
Background: Protein-protein interactions do not provide any direct information regarding the domains within the proteins that mediate the interactions. The majority of proteins are multi domain proteins and the interaction between them is often defined by the pairs of their domains. Most of the former studies focus only on interacting domain pairs. However they do not consider the in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular plant
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2015